
SPAM: a Secure Package Manager
Fraser Brown* Ariana Mirian† Atyansh Jaiswal† Andres Nötzli* Deian Stefan†

* Stanford University † UC San Diego

Abstract
Uncurated package registries are extremely appealing at-
tack vectors—why send out phishing emails when you can
insert a backdoor into a popular library and target every
user of the startups, banks, and government applications
that rely on the library? Unfortunately, popular package
management systems do very little to keep up with this
threat; at best they host packages behind HTTPS. We ar-
gue for a more secure package manager, one that can cope
with nation state adversaries (who have a history of infil-
trating codebases). We describe the design of one such
secure system—SPAM—that uses the new Stellar feder-
ated Byzantine fault tolerant system.

1 Introduction
Package managers present a security paradox: their job is
to make it easy and secure to pull and install code from the
internet. Uncurated package managers, package managers
that do not impose restrictions on the packages that users
upload, have an even tougher job precisely because of this
lack of restriction. Uncurated managers have been wildly
successful because they make it easy to install and publish
packages, but they have also been subject to a number
of security flaws. For example, in March of 2014, secu-
rity researchers discovered a bug in npm that would allow
an attacker complete control of the registry [1]. This at-
tacker, for example, could replace packages with malicious
counterparts or remove packages altogether. A similar
vulnerability in RubyGems came to light when a user up-
loaded a proof-of-concept exploit that allowed remote code
execution [2, 3].

Most existing uncurated systems focus on reducing risk
by securing the connection between the client and the reg-
istry to prevent network attackers from tampering with
registry data in transit; npm and pip/PyPI [4, 5] have both
switched to making registry requests over https over the
past few years. Similarly, most uncurated package man-
agers check the hash of a package once it has been down-
loaded, a request (made over https) meant to ensure the
integrity of the downloaded package [5]. These systems
do not protect against registry compromise, but recent re-
search addresses this threat. For example, the Diplomat
system presents a key-based method for ensuring the in-
tegrity of packages in such an event [6].

These systems, though trying to address threats outside
of the registry infrastructure, are not secure against internal

threats: malicious or negligent maintainers and developers
can compromise the registry ecosystem for all of its users.
For example, in January of 2016, researchers described
how evil npm software would propagate: once downloaded
from the registry, this malware would add itself as a de-
pendency to all of the infected developers’ projects [7].
In a blog post, npm maintainers argue that this is a nec-
essary side-effect of allowing arbitrary install scripts, and
that “the utility of having installation scripts is greater than
the risk of worms.” Furthermore, “if a large number of
users make a concerted effort to publish malicious pack-
ages to npm, malicious packages will be available on npm.”
However, embracing the dominant attitude of uncurated
package managers, they also believe that “npm is largely
a community of benevolent, helpful people, and so the
overwhelming majority of software in the registry is safe
and often useful” [7].

In contrast, other un- or lightly-curated systems have not
found their communities to be full of benevolent, helpful
people. The Google Play store struggles with data-stealing
apps [8], rooting apps [9], and botnet apps [10]. Infection
rates across Android app marketplaces ranged from 0.02%–
0.47% in 2012, and researchers discovered multiple apps
exploiting zero-day vulnerabilities during the course of
this analysis [11]. The Chrome Extension Store faces
similar problems: in 2014, Kapravelos et al. detected 130
malicious and 4,712 suspicious extensions [12]. Malware
and adware creators have also purchased popular Chrome
extensions and then pushed automatic, malicious updates
to extension users [13].

Similarly, registry administrators may not always act—
or may be compelled not to act—in the best interests of
their users. For example, npm administrators have re-
uploaded packages after they are pulled by developers [14].
Many registries are also backed by for-profit companies1;
trusting these registries to protect their users is like trusting
Pinto-era Ford to protect its drivers—a gamble at best.
Furthermore, even if npm is staffed by the opposite of Ford
execs, governments may compel them to tamper with the
registry anyway. At the request of the US government,
for example, Yahoo! included custom backdoors to allow
agencies to search user emails [15]. This surveillance
shows no signs of slowing (e.g., see [16]).

In this paper, we describe the current state of uncu-
rated package managers, using npm as a running example.
Then, we present designs for a community repository and

1e.g. npm (npm, Inc.) and Yarn (Facebook)

1



package manager, SPAM, that limit the ramifications of
malicious and negligent users and administrators.

2 Current package managers
This section presents an overview of uncurated package
management systems and outlines several security chal-
lenges within these systems. We use the Node.js package
manager npm as a running example because of its popu-
larity. The security issues we describe are neither unique
to npm nor specific to Node.js; most uncurated language
package managers have similar drawbacks. To illustrate
these common drawbacks, we first describe the workflow
of a typical Node.js developer.

Developer Dan wants to reformat the columns of a CSV
file. To get hip with the times, he decides to use JavaScript
and Node.js, and begins by writing a helper function that
inserts spaces on the left-hand side of a line. The function
is elegant and useful; to share it with others, he adds testing
and benchmarking (pulling in dependencies like the tape
library) and creates a new package named lpad.

Dan decides to make the world a better place by pub-
lishing lpad on the npm registry. Any developer can in-
stall Dan’s lpad package or depend on it within their own
project. Some users may even download lpad without
knowing it; as they install more popular packages that list
lpad as a dependency, they also install lpad itself. Users
may even end up with multiple versions of lpad or multi-
ple copies of the same version (due to how npm resolves
dependencies) [17, 18]. Eventually, fans of lpad start bom-
barding Dan with requests to update and extend his pack-
age, so he uploads it to GitHub and syncs his repository
with the Travis continuous integration (CI) cloud service.
Now, tests will run anytime someone creates a pull request
or Dan pushes directly to the repository—lpad will only
contain fast, functionally-correct code!

Using uncurated package managers, developers are able
to build relatively complex software largely by repurposing
existing projects (like Dan’s lpad); the package manager
and registry do not impose restrictions on uploaded code.
This lax security, however, comes at a cost.

Malicious registry In most uncurated package manage-
ment systems, all users that depend on a malicious registry
are at its mercy. For example, a registry may serve mali-
cious or vulnerable packages in place of packages the users
request. A registry may behave maliciously even if its ad-
ministrators are virtuous: admins may be compelled by the
government, network attackers may tamper with packages
via MITM attacks, etc. In fact, in writing this paper, we
discovered a vulnerability in npm that allows a network
attacker to intercept certain installs [19]; developers may
explicitly link to their dependencies with http instead of
https URLs, putting those who download their packages
at risk. npm maintainers have not fixed this vulnerability.

Instead, they warn developers to manually stick an “s” at
the end of those links [20].

Malicious developer In addition to trusting the registry,
developers must also trust the packages that they install,
and those on which their installations depend on. This
is deceptively difficult: even when developers rely on a
handful of packages, their transitive dependency list is
an order of magnitude larger—and that much more dif-
ficult to audit. We looked at the top 20 npm packages
as of January 24, 2015, and found that the average npm
package lists 50 dependencies, with a median of one, a
minimum of zero, and a maximum of 626. In practice,
this number is sometimes worse; for example, a popular
dependency that many bootcamps include in their skele-
tons is hackathon-starter [21]. This project downloads
558 dependencies before bootcampers even write a line
of app code. While NPM suggests installing only trusted
packages, this also does not scale when popular packages
like lodash release every thirteen days, on average [7, 22].
Furthermore, packages with many dependencies may also
include vulnerable and out of date dependency versions.
We analyzed2 all packages by the top ten authors on npm—
presumably trustworthy people—and out of 6,498 projects,
we found that 1,693, or 26.1% have out of date dependen-
cies.

Malicious integration services Along with registries
and third-party code, developers also place implicit trust in
integration tools like Travis [24]. This implicit trust is once
again transitive: for example, when Dan shares his API
keys with Travis, he—and anyone whose package depends
on him—is trusting Travis not to publish any malicious
package versions. Furthermore, Dan must properly encrypt
his keys when he shares them with Travis, since continuous
integrators are allowed to use plaintext API keys. Many
developers accidentally publish their API keys publicly:
we searched the first 1,000 GitHub results for “provider:
npm api key.” and found that 174 of 527 unique GitHub
developers uploaded a YAML file with unencrypted API
keys.

3 Registry design
In this section, we describe our secure package manager
(SPAM), which intends to prevent and contain damage
even in the presence of malicious users, registry adminis-
trators, and third-party tools like Travis. SPAM consists
of a distributed multi-node registry which manages pack-
age data and metadata and provides an interface to update
and query this data. SPAM also includes a client tool that
allows developers to communicate with the registry.

2The measurements and analyses described here are based on a clone
of the npm registry; we fetched packages between December 6–15, 2016
using registry-static [23].

2



The registry At a high level, the goal of the registry
is to maintain a ledger with information about users and
packages. The ledger provides the client tools—and thus
the developers who use them—with a way of verifying
the authenticity of data and metadata about packages and
other users. The ledger also serves to provide developers
with a single mechanism for storing package metadata.
We use a federated Byzantine agreement system (FBAS)
to ensure that the ledger remains uncompromised in the
presence of malicious actors (e.g., registry administrators
or government mandates) [25].

The ledger consists of different messages that record
user information (e.g., name registrations and proofs of
identity) and package metadata (e.g., package release in-
formation). Each entry en in the ledger contains the entry
number n (a monotonically increasing number), a new
client message m, and a hash of the entry number, message
and previous ledger entry—i.e., H(n‖m‖en−1). Therefore,
each entry in the ledger securely refers to the previous
state of the ledger. The message m describes an action
(e.g., update package) that the client has requested of the
registry and contains that client’s signature.

For example, to create a new account, a developer
executes the spam new-user command. The SPAM
client creates a new user public key pair and sends the
register user message to the registry; this message con-
tains the user’s public key and proposed name, signed by
their corresponding private key. If that name is not al-
ready taken—if it has not already been recorded in the
ledger—the registry will add the register user request
to the ledger. This record acknowledges that the new name
is now associated with the user’s key.

There are ten different messages that the SPAM client
can send to the registry after interacting with users on
the command line that lead to ledger modifications. Ta-
ble 1 lists these messages, most of which are self ex-
planatory, with the exception of the prove identity and
extensible messages—the latter of which we describe
later on. The prove identity message allows a user to
associate their private key with their public social networks,
therefore tying their SPAM identity to an external identity.
For example, a developer will associate his SPAM key
with his Twitter @handle by publishing a signed Tweet.
This allows other users to verify the authenticity of the
developer’s packages; furthermore, it allows other users to
install his packages only if they trust him and he has not
revoked his key.

User and package keys SPAM manages all keys auto-
matically to prevent key overuse and compromise. For
example, SPAM creates a new user key when a developer
creates a new account. SPAM also generates a new key
each time the user creates a new project, and only that
key may sign project updates—the user key cannot sign
them. Users can run other SPAM commands that create

additional keys associated with a project, allowing them
to release projects from multiple machines or integrate
with CI tools like Travis. Compromise of a project key is
not equivalent to compromise of a user’s account; a mali-
cious, key-stealing Travis can only push updates to a single
project. Moreover, users can revoke project keys if they
have been compromised.

To revoke a project key, the user runs the spam proj
revoke-key command, which sends a message, signed
with the user key, to the registry. This message indicates
which project key should be revoked. At this point, the user
must approve or flag any past changes to the compromised
project (such as collaborator additions). In practice, this
amounts to choosing an entry number to demarcate the
point of compromise. The SPAM client displays a list of
project changes and asks the user to flag the first suspicious
change, if any. All subsequent changes are automatically
flagged as suspicious. Finally, the SPAM client sends these
flag messages to the registry.

To revoke and replace a user key, the user runs the
spam user replace-key command, which consists of
several steps. First, the cli tool prompts the user to up-
date the majority of their external identity proofs with
a new key (which is equivalent to sending a number of
prove identity messages, atomically). The cli tool will
then notify the registry that the old key is invalid and that
the new key is associated with the same user. By updating
the ledger with the replace user key message, the reg-
istry asserts that it has verified the new key with the user’s
external identities (e.g., Twitter). Then, the SPAM client
asks the user to demarcate a point of compromise, follow-
ing similar steps to those in the project-key compromise.

Distributed registry Our registry consists of several (at
least four) top-level mirrors, or nodes that use a consen-
sus protocol—specifically, the Stellar Consensus Proto-
col (SCP)—to agree on ledger entries [25]. Like tradi-
tional, centralized Byzantine fault tolerant agreement (e.g.,
PBFTA [26]), SCP can guarantee safety and liveness by
relying on a quorum of nodes to come to an agreement;
for example, in an arrangement with four top-level nodes,
our system tolerates one failure. Users can configure the
SPAM cli tool to talk to any one of the top-level nodes,
and users can trust its results as long as they configure it to
receive at least two signed replies from distinct nodes.

SCP, in contrast to PBFTA, allows nodes to choose
which other nodes to listen to. In combination with other
design choices, this allows a node to detect and attribute
attacks in which multiple registry mirrors are colluding.
This is because SCP does not require a majority of nodes
to compose a quorum; instead, nodes choose one of more
quorum slices [25]. Every node n’s quorum slices must be
non-empty and contain n itself. For n to agree on ledger
entry e, every node (including n) in one of n’s quorum
slices must communicate that they believe e to be true.

3



Client message Description

〈register user : U,Upk〉Usk Register a new user U and public key Upk signed with the user’s private key Usk.
〈prove identity : p,Upk〉Usk Associate an external identity with user key Upk; the proof of identity p contains

URL(s) to signed social network post(s). When a registry node records this message
in its ledger, it asserts to have verified the signed post(s).

〈〈register package : P,Ppk〉Psk 〉Usk Register a new package name P and project keys (Ppk,Psk).
〈〈replace project key : P,Ppk〉Psk 〉Usk Revoke existing project key and associate the new key pairs (Ppk,Psk) with project P.
〈replace user key : U,Upk, p〉Usk Replace user U’s existing key with with key-pair (Upk,Usk). Here, p contains proofs

of identity (as above) for a majority of the U’s external identities.

〈〈register project key : P,P′pk〉P′sk
〉Psk Add a new collaborator/device key to P by registering their project key P′pk. Psk must

correspond to the project key of the owner or another collaborator/device.
〈revoke project key : P,P′pk〉Psk Revoke a collaborator/device key P′pk. Psk must correspond to the project key of

the owner or another collaborator. If P′pk is the owner’s project key, Psk must be the
corresponding secret key.

〈release package : P,v, pkg〉Psk Release a new package version v for project P. The package data pkg contains the
actual package tarball (and other metadata). The registry nodes record a similar
message; instead of the tarball, however, they record the URL(s) where the tarball
can be downloaded from.

〈flag package : P,v, f 〉Psk Flag version v of package P as f (suspicious or approved), if not already flagged.

〈extensible : data〉Xsk Add application-specific data to the ledger signed by either project or user key Xsk.

Table 1: The different messages supported by our registry. We omit the messages that clients use to retrieve data from the ledger.

Now, in order for e to be appended to the ledger, every
other node must be convinced by one of its own quorum
slices. Reaching consensus is a multi-phase process, the
details of which we omit; we refer the reader to the SCP
paper and Stellar core for details [25, 27].

In our design, the top-level mirror nodes may employ
other second-level nodes as members of other slices. Top-
level mirror nodes maintain both the ledger and a mirror of
the registry contents; they track package data and metadata.
Second-level nodes, in contrast, do not store package data.
Rather, they simply maintain a copy of the ledger. Second-
level nodes can arbitrarily join the network (by considering
at least two top level nodes to be in their quorum slice) to
add additional oversight.

This additional oversight is not provided by second-level
nodes referring only to the ledger. Rather, all nodes also
keep track of a “rollback safety” data structure that contains
the previous round of signed (SCP-level) messages from
nodes in its quorum slices. Since these messages contain a
hash of the ledger entry histories, a signed message from a
node indicates that this node agrees to the entire history of
the ledger. If top-level nodes collude to rollback the ledger
history, second-level nodes will be able to detect this; they
will be able to prove collusion by producing two signed,
contradicting messages from a culprit node. One of these
messages comes from the rollback safety buffer and one is
the most recent message with a backdated entry number.

The registry threat model In the absence of second-
level nodes, our system can only provide strong guarantees
if the majority of top-level nodes are well-behaved. Under
this assumption, we get availability directly from SCP’s

liveness guarantees [25]. SCP also ensures the safety of
the ledger, which itself contains signed messages; together,
this ensures the integrity and authenticity of packages. Ev-
ery time a developer downloads a package, the SPAM cli
tool verifies that package’s signature. Moreover, the SPAM
cli tool verifies that that package has not been flagged (e.g.,
due to key compromise).

During the time when key is compromised but not yet
revoked, our system cannot protect the developers that
download malicious packages signed under the compro-
mised key. However, SPAM’s separation of project and
user keys and tie in with external services—e.g., using
Twitter for identity verification—make it possible to re-
cover from key compromises without having to create a
new identify. Even if an attacker steals a user key, they
cannot prevent the user from revoking the key unless they
compromise a majority of that user’s external identities
(GitHub, Twitter, StackOverflow, etc.).

In general, our system cannot provide guarantees against
users running malicious code. However, we can attribute
malicious packages back to their authors—and, to a cer-
tain extent, to those authors’ identities. Furthermore, users
can configure the SPAM cli tool to only install packages
authored by developers that the user explicitly trusts—a re-
striction that may be imposed on sub-dependencies as well.
Though this simple white-list policy is easy to ship in an
early release of SPAM, we envision eventually extending
the cli tool with more interesting policies. For example,
we can take advantage of the fact that SPAM users are
already connected to social graphs (e.g., Twitter) to com-
pute a level of trustworthiness. Even if Eve creates fake

4



Twitter and GitHub identities, she will have to cultivate
real friendships in order to appear legitimate 3.

Without second-level nodes, a quorum of top-level mir-
ror nodes can collude to carry out a number of attacks.
For example, they can revoke and replace a user’s key
by appending a replace user key message to the ledger,
signing it with a new, fake user-key. This is possible even
without compromising the user’s Twitter or GitHub ac-
counts, because the onus of verifying identity is on the
registry itself. Colluding nodes can also roll back ledger
history to, for example, conceal backdoors.

With second-level nodes, on the other hand, our system
is able to detect rollback attacks and attribute them to ma-
licious nodes. As long as a first- or second-level node is
not colluding, this node can prove that other nodes have
colluded. Using the rollback safety mechanism, the hon-
est node identifies any contradictions in any lying node’s
version of history. Even if all nodes except for one are col-
luding, honest, second-tier nodes will still see externalized
messages which can be used to prove that the colluding
first-level nodes in their quorum slices have said contra-
dicting things. This alone, however, does not prevent key
revocation attacks.

We can extended our system via the extensible mes-
sage to both detect key revocation attacks and attacks
wherein colluding nodes upload backdoored packages only
to remove them from their registries shortly after. If third-
party services (e.g., the Internet Archive, ACLU, or EFF)
are willing to commit to hosting signed packages and
copies of signed social network messages, they can use the
extensible message to state their purpose in the ledger.
The ACLU, for example, might say that it is willing to host
this data for a certain period of time. Then, every time a
package is released or an identity is proven, the ACLU will
store the package or verification data on its servers and
use the extensible message to state that it has done so.
Such services enable second-level nodes to verify that the
ledger’s claims about key revocations and the contents of
packages are replicated on the ACLU service. If registry
nodes collude to revoke someone’s key, the ACLU will not
be able to replicate any social network data, since this data
does not exist. If the SPAM cli tool does not see a such an
identity proof nor a (verifiable) confirmation of revocation
from ACLU, it can be configured to treat the new key as
compromised: it will refuse to trust anything that the key
has signed. A similar process can be used to ensure that
registry nodes are not colluding to conceal backdoored
packages.

Limitations Our system design, naturally, comes with
limitations. For example, our design does not prevent front-
running attacks. These attacks occur when, for example,

3Here again we can leverage the idea of quorum intersection from
SCP to ensure that even if Eve creates thousands of followers, if none
intersect with other peoples’ graphs, she will still appear suspicious.

a developer tries to register a user name but is communi-
cating with a malicious registry node. The malicious node
will receive the user request but instead request the user’s
chosen name on behalf of an attacker. Once the attacker
has successfully registered the name, the malicious node
will handle the developer’s request as usual—ensuring its
denial. This problem is not an artifact of our design [28].

Our design also explicitly does not allow users to trans-
fer user or project names to others (without essentially giv-
ing up on their social network identities as well). Though
we believe that such extensions are possible, providing
such “features” in the presence of nation-state adversaries
and key continuity—i.e., the ability to easily replace com-
promised keys—remains an open problem.

4 Related work
Cappos et al. [29] identified the dangers of compromised
or malicious package managers and registries. The Up-
date Framework (TUF) [30] and the Diplomat [6] pack-
age managers—related work closest to ours—follow up
on [29], borrowing ideas from Tor’s update framework
Thandy [31]. TUF guarantees package integrity by (1)
using multiple keys to sign any package data and (2) as-
signing roles to keys so that one key cannot be used to
sign off on different kind of data (e.g., one project’s key
cannot be used to sign another’s releases). Diplomat fur-
ther extends TUF with a key hierarchy, maintained by the
registry, to address an important concern—how to retrofit
existing package manager design with security. We adopt
the idea that user keys and project keys should be separated
from these frameworks. Unlike these systems, however,
we do not assume registry administrators to be trusted—
our attacker model is considerably stronger. This naturally
comes at the cost of not being easy to retrofit on top of
existing, insecure systems.

Keybase [32] pioneered the idea of tying public keys
with online identities. Our system uses this same idea
to provide key continuity. Though we do not rely the
PGP web of trust that Keybase builds on—our design is
considerably simpler [33]—we believe that a similar idea
of following or endorsing users on SPAM can potentially
prove useful in assigning a level of (dis)trust to downloaded
packages. For example, if a developer installs a package
that is signed by a user that is not followed by anybody that
the developer follows/endorses, the SPAM cli can warn
before continuing with the install—potentially preventing
typosquatting attacks.

References
[1] NPM, “Newly paranoid maintainers.” http:

//blog.npmjs.org/post/80277229932/newly-
paranoid-maintainers, March 2014.

5



[2] Evan, “Data verification.” http://blog.rubygems.
org/2013/01/31/data-verification.html, Jan-
uary 2013.

[3] postmodern, “Add safe load #119.” https:
//github.com/ruby/psych/issues/119#
issuecomment-12875715, January 2013.

[4] Python Software Foundation, “PyPI - the Python
package index.” https://pypi.python.org/pypi,
January 2017.

[5] NPM, “npm registry is now fully HTTPS!.”
http://blog.npmjs.org/post/142077474335/
npm-registry-is-now-fully-https, April 2016.

[6] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and
J. Cappos, “Diplomat: Using delegations to protect
community repositories,” in NSDI, March 2016.

[7] NPM, “Package install scripts vulnerability.”
http://blog.npmjs.org/post/141702881055/
package-install-scripts-vulnerability,
March 2016.

[8] S. Evans, “Data-Stealing Malicious Apps Found in
Google Play Store.” https://www.infosecurity-
magazine.com/news/malicious-apps-found-
in-google, September 2016.

[9] D. Goodin, “Godless apps, some found in
Google Play, can root 90Android phones.”
http://arstechnica.com/security/2016/
06/godless-apps-some-found-in-google-
play-root-90-of-android-phones/, June 2016.

[10] A. Menczer and A. Lysunets, “DressCode An-
droid Malware Discovered on Google Play.”
http://blog.checkpoint.com/2016/08/31/
dresscode-android-malware-discovered-on-
google-play, August 2016.

[11] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets.,” in NDSS,
February 2012.

[12] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel,
G. Vigna, and V. Paxson, “Hulk: Eliciting malicious
behavior in browser extensions,” in USENIX Security,
August 2014.

[13] L. Constantin, “Spammers buy Chrome
extensions and turn them into adware.”
http://www.pcworld.com/article/2089580/
spammers-buy-chrome-extensions-and-turn-
them-into-adware.html, January 2014.

[14] NPM, “kik, left-pad, and npm.” http:
//blog.npmjs.org/post/141577284765/kik-
left-pad-and-npm, March 2016.

[15] M. Sullivan, “Yahoo helps the government read
your emails. just following orders, they say..”
https://www.washingtonpost.com/lifestyle/
style/yahoo-helps-the-government-read-
your-emails-just-following-orders-they-
say/2016/10/05/05648894-8b01-11e6-875e-
2c1bfe943b66 story.html, October 2016.

[16] D. J. Trump. https://twitter.com/
realdonaldtrump/status/392990408843984897,
October 2013.

[17] npm, “npm v3 dependency resolution.” https://
docs.npmjs.com/how-npm-works/npm3, Decem-
ber 2015.

[18] npm, “npm v2 dependency resolution.” https://
docs.npmjs.com/how-npm-works/npm2, Decem-
ber 2015.

[19] D. Stefan, “npm shrinkwrap allows remote code
execution.” https://hackernoon.com/npm-
shrinkwrap-allows-remote-code-execution-
63e6e0a566a7#.e7an55fo2, December 2016.

[20] Seldo, “Avoid http urls in shrinkwrap files.” http:
//blog.npmjs.org/post/154400916805/avoid-
http-urls-in-shrinkwrap-files, December
2016.

[21] S. Yalkabov, “Hackathon starter - a kickstarter for
nodejs web applications.” https://github.com/
sahat/hackathon-starter, January 2017.

[22] C.-A. Staicu, M. Pradel, and B. Livshits, “Under-
standing and automatically preventing injection at-
tacks on node. js,” Tech. Rep. TUD-CS-2016-14663,
TU Darmstadt, Department of Computer Science,
November 2016.

[23] davglass, “registry-static.” https://www.npmjs.
com/package/registry-static, January 2017.

[24] Travis CI, “Teamwork makes Travis CI possible.”
https://travis-ci.com/about, January 2017.

[25] D. Mazieres, “The stellar consensus protocol:
A federated model for internet-level consensus.”
https://www.stellar.org/papers/stellar-consensus-
protocol.pdf, February 2016.

[26] M. Castro, B. Liskov, et al., “Practical byzantine fault
tolerance,” in OSDI, February 1999.

6



[27] stellar, “stellar-core.” https://github.com/
stellar/stellar-core, January 2017.

[28] I. Security and S. A. Committee, “Advisory on
domain name front running.” https://www.icann.
org/en/system/files/files/sac-022-en.pdf,
October 2007.

[29] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman,
“A look in the mirror: Attacks on package managers,”
in CCS, ACM, 2008.

[30] J. Samuel, N. Mathewson, J. Cappos, and R. Dingle-
dine, “Survivable key compromise in software update

systems,” in CCS, ACM, October 2010.

[31] N. Mathewson, “Thandy: Secure update for tor.”
https://opensource.googleblog.com/2009/
03/thandy-secure-update-for-tor.html,
March 2009.

[32] Keybase, “What keybase is really doing.”
https://keybase.io/docs/server security,
January 2017.

[33] T. Unangst, “signify: Securing OpenBSD from us to
you,” in BSDCan, 2015.

7


