
Saber: Delegating Web Security to Browser
CSE 227 Final Project, Spring 2017

Atyansh Jaiswal Jonathan Luck Joshua Chao

University of California, San Diego

{atjasiwa,jhchao,jrluck}@ucsd.edu

Abstract
Today, any non-trivial application requires the ability to communi-
cate over the network. Providing a secure connection (i.e., a confi-
dential and authenticated connection) is a difficult task as it involves
correctly implementing complex protocols. Having stood the test of
time as being the most popular application for network communi-
cation, browsers have been able to achieve network security with
greater success. However, almost all other non-browser applications
have lagged behind. We look at tools that fetch webpages over https
(such as wget), analyze their connection security, and propose that
these tools delegate network security to browsers. Furthermore, we
built a prototype version of wget to demonstrate the feasibility of
building applications that provides security guarantees (confidential-
ity, integrity, authenticity) without requiring a deep understanding
of the TLS protocol.

1. Introduction
Transport Layer Security (TLS) is a cryptographic protocol designed
to provide end-to-end communication security between two parties,
even in the presence of active man-in-the-middle adversaries [5]. It
has since become the standard for providing secure communication
on the Internet and is used for most sensitive applications, including
online banking, email, instant messaging, shopping, etc. Usage of
TLS is most commonly seen in securing web traffic in the form
of HTTPS [21]. When implemented correctly, HTTPS guarantees
confidentiality, integrity, and authenticity of all web communication
between two parties. Furthermore, there are additional mechanisms
that improve the security of the entire HTTPS ecosystem.

While browsers are not free from TLS bugs, their implementa-
tions of network security protocols are regarded as the state of the art.
Additionaly, browser vendors are the original pioneers of modern
HTTPS standards and have been the first to implement them into
practice. Previous work has found that non- browser applications
have struggled with validating TLS certificates [11], but usage of
this non-browser software is quite prominent. These applications
and libraries support communication on top of TLS and provide the
impression of giving security to the user, but they fail to live up to
that promise.

The issues with improper implementation of TLS for non-
browser applications are due to a combination of the complexity
of the protocol, lack of general understanding of TLS, and not
having the same security expertise and engineering resources that

browsers possess. Individually solving these issues would be a
monumental task and would require widespread education of proper
implementation of communication security, along with the expense
of recruiting security experts for every application that supports
HTTPS. This may not be feasible for several applications that are
maintained by individual developers but are nonetheless popular.

In this paper, we propose a new way to build command-line
HTTP clients that allows developers to use the TLS protocol, but
does not demand an intricate understanding of the correct protocol
implementation. Our method involves delegating the handling of
connection security to browsers, so the non-browser application
deals only with application layer logic. This allows non-browser
applications to get connection security “for free” from browsers.
This also lets them take advantage of any mechanisms that browsers
implement to harden TLS security (such as HSTS, HPKP, etc.). We
have built a prototype version of wget in this fashion. Our secure
wget (swget) application is able to validate proper TLS connections
without writing any code that requires a deep knowledge of the TLS
protocol, and further provide modern HTTPS security guarantees
that only browsers typically provide.

This paper is organized as follows: In Section 2, we discuss
the background material related to TLS and HTTPS, the various
existing problems with the ecosystem and how browsers have taken
steps to solve them. In Section 3 we look at some non-browser
applications, in particular wget to see how they compare to modern
browsers in terms of connection security. In Section 4, we present the
design of a library that delegates connection security to the browser.
In Section 5, we present swget as a prototype implementation of
wget that provides better connection security by delegating TLS to
browsers. In Section 6, we conclude and discuss related work.

2. Background
In this section, we present a brief description TLS, HTTPS, and
additional security mechanisms that harden the HTTPS ecosystem.

2.1 TLS

Transport Layer Security (TLS) is a cryptographic protocol that
provides the following properties:

• Confidentiality: All communication between two parties is
encrypted such that no information about the contents of the
communication is leaked to an adversary.



• Integrity: An adversary must not be able to change the contents
of the communication between the two parties in any way.

• Authenticity: The two communicating parties can verify the
identity of each other (typically only the client verifies the server
identity) through a certificate signed by a trusted third-party,
and ensure that the messages exchanged are from each other. As
such, an adversary cannot pretend to be one of the comunicating
parties.

TLS provides these security guaranties underneath the appli-
cation layer. Several application layer protocols such as HTTPS,
IMAPS, XMPP, and SMTP use TLS to provide end-to-end security.

2.2 HTTPS

HTTPS (or “HTTP over TLS”) is a protocol which secures HTTP
traffic within a connection encrypted by the TLS protocol [21]. It is
mainly used for authenticating a website and securing communica-
tion between the website and its users. This is done with the use of
server certificates [4]. In a normal HTTPS connection, when a client
makes a request over HTTPS to some website, the server presents
the client with a certificate signed by some certificate authority. This
certificate authority may not directly be trusted by the client but may
instead be trusted by another entity that the client may trust. The
server also responds with a chain of trust listing all the CAs that are
part of the chain connecting to a root CA that the client trusts.

A client needs to validate the certificate’s credentials and deter-
mine the validity of the certificate. A client may find the certificate
to be invalid in cases when it’s expired, has a mismatching common
name field, is revoked, uses a weak signature algorithm, etc. We list
several different types of client behavior for certificates in Table 1
in the appendix.

2.3 Strict Transport Security

While HTTPS protects users from active man-in-the-middle attack-
ers, the protection only applies if the client actually makes an HTTPS
web request.

Secure connection to a domain that does serve over HTTPS can
only be guaranteed if the initial web request made by the client was
over HTTPS. Unencrypted HTTP requests and responses can be
modified freely by an active man-in-the-middle attacker. Even if
a web server redirects from HTTP to HTTPS for partial or all of
the web requests that it serves, an active man-in-the-middle attacker
could intercept that unencrypted redirect response and replace it
with a forged accept-response pretending to be the server. As a
result, the attacker could make it so that the client never actually
switches to an HTTPS connection and remains vulnerable. This
class of attacks is commonly known as SSL Stripping [18].

To combat this problem, servers serve a Strict-Transport-Security
(HSTS) header as part of the response that instructs the client
to only visit the website over HTTPS connection [15]. A client
that respects this HSTS policy would automatically upgrade all
HTTP requests made by the user to HTTPS before sending the
request over the network. As long as the client can guarantee a
secure connection with a domain once and receive an HSTS header,
all future communication within a designated timeframe to that

domain is protected. HSTS headers also need to provide a max-
age policy that determines how long a client enforces the HSTS
policy. This policy is continuously updated every time an HSTS
header is received, so if a client visits the same website again within
the expiry period, the client stays protected. Otherwise, the client
loses protection when the max-age policy expires and protection is
resumed once the client receives a fresh HSTS header from securely
connecting to the domain again. The max-age policy allows websites
to switch back to HTTP connections should they choose to do so in
the future. Without a max-age policy, a client wouldn’t be able to
communicate over HTTP with the server again once it has received
an HSTS header.

HSTS relies on the Trust On First Use (TOFU) principle to
harden protection. Today, browsers ship with preloaded list of
domains that have HSTS protection turned on by default so that
users gain HSTS protection even before they establish a single
secure connection. Any domain owner can apply to be a part of
this list and the process has seen significant adoption since it was
automated by Chrome [1].

2.4 Public Key Pinning

The current HTTPS Public Key Infrastructure relies on trusting all
the root CAs and by extension, all intermediate CAs trusted by root
CAs. This raises the concern that if one of the CAs was coerced or
compromised by some adversary, then that CA could issue a valid
rogue certificate for some website without the permission of the
owner of the website. This rogue certificate would be trusted by any
user that trusts the CA that generated it. Previous work has shown
that certificate authorities can be falsely tricked into issuing rogue
certificates and in 2010, a commercial software was available for
sale to government agencies to use rogue certificates for intercepting
traffic [23]. HTTPS and HSTS alone do not protect from this kind
of interception.

HTTP Public Key Pinning (HPKP) solves this problem by
allowing web servers to serve an HTTP header over HTTPS that
lists the hashes of the complete Subject Public Key Info field of
a certificate for each public key that the domain owner wishes to
use to establish a TLS connection. A client that respects the HPKP
policy must ensure that while establishing a TLS connection with a
website for which there is a cached HPKP entry, at least one key in
the certificate chain matches a key stored in the pin set [8].

This allows a domain owner to pin only their own keys. In the
case that the owner chooses to only pin leaf-level keys generated
by the owner themselves, no CA would be able to generate a rogue
certificate for the domain that a client that has already had the keys
pinned. The owner can also choose to pin the public keys for specific
CAs that they trust (over all CAs), still reducing the surface area for
attackers that compromise CAs.

Similar to HSTS, HPKP headers also specify a max-age policy
which determines how long a client should remember the pinned
key. This value also keeps getting continuously updated if the client
receives the header again before the policy expires. HPKP headers
are not very commonly seen from websites but both Firefox and
Chrome provide support for it. Browsers also ship preloaded HPKP
lists similar to HSTS that provide this protection by default.



2.5 Certificate Revocations

In the case that a domain’s private key gets leaked (due to server
compromise, phishing, etc.) any certificates that were issued for
the corresponding public key need to be revoked. Both registering
a certificate as revoked and checking the revocation status of a
certificate have been tricky challenges for the server and client
respectively [17].

One way for checking revoked certificates is to maintain a
Certificate Revocation List (CRL) for all revoked certificates which
the clients could use to validate the certificate [4]. This list needs to
be continuously updated with the latest revocations and clients need
to be able to check the revocation status of a certificate dynamically.
In a situation where a client is unable to access the revocation list (for
example if an adversary runs a denial of service attack that prevents
the client from contacting the server), then no further operations that
depend upon the validation of the certificate can take place.

Online Certificate Status Protocol (OCSP) is an Internet protocol
used to communicate the revocation status of x509 certificates [19].
The protocol works similarly to CRLs but require less bandwidth
on the client. A client requests the status of a certificate from an
OCSP server, which responds whether the certificate is revoked or
not. OCSP still has the same denial of service issues as CRLs and
many clients tend to accept a certificate if they cannot successfully
get an OCSP response. To address this issue, the original server that
presents the certificate can make a request to the OCSP server and
staple the OCSP response along with the original certificate, which
the client can verify offline. This is known as OCSP stapling and
many web servers support it today (although only about 9% of TLS
connections use it as of 20.4) [13].

Despite OCSP stapling, an attacker that can compromise a server
can simply serve the certificate without a stapled OCSP response
which the client may accept. Website owners therefore have an
option to issue a certificate with a “Must-Staple” flag [12]. If a
client sees this flag in the certificate, the client must not accept the
certificate without a stapled response. This is respected by Chrome
and Firefox.

Chrome and Firefox have also introduced offline CRLs that
they push to user’s browsers during updates [13, 14]. This is
primarily used for serious incidents (say if an intermediate CA gets
compromised) to push emergency updates to the CRLs maintained
by the client.

3. Issues with non-browsers
TLS is a complicated protocol to implement correctly and the
configuration options in TLS libraries are difficult to understand.
Several non-browser softwares have been shown to be insecure
against a network attacker not due to using an incorrect protocol,
or a broken library, but rather due to incorrect certificate validation
arising out of mistakes when configuring TLS options for their
application [11].

Further, even a correct implementation of TLS does not protect
these applications from SSL stripping, rogue certificates, and revo-
cations, unless all the additional mechanisms such as HSTS, HPKP,
and OCSP stapling are also implemented by the application. In our

experiments with wget, curl, and the standard request libraries for
Python and Node.js, we found that only wget supports HSTS and
has very limited and manual support for public key-pinning. None
of the four HTTP clients threw any form of error or warning for a
revoked certificate and the request libraries for Python and Node.js,
and curl do not have any support for HSTS and HPKP.

Wget provides support for HSTS, but upon investigation, we
found that wget was not updating the expiration time for HSTS
entries every time it received a valid HSTS header with a valid
max-age policy. This breaks the continuity policy of HSTS which
is supposed to maintain a secure HSTS entry as long as user visits
the domain frequently (i.e. within the specified max-age period). If
a domain provides an HSTS max-age policy of 1 day, then the wget
client would be vulnerable to interception at least once a day even
if the developer visits the domain multiple times within that period.
We reported this issue to wget which was then promptly fixed [22].

3.1 Certificate validation results

We tested the behavior of 6 different HTTP clients (2 command-
line tools, 2 language request libraries, 2 browsers) when presented
with 27 different types of certificates. The complete results are
presented in Table 1 in the appendix. Explanation of different types
of certificates we tested-

1. Expired. The certificate has an expiration date in the past.

2. Wrong Host. The certificate is not valid for the website that
presented it and should be rejected.

3. Self Signed. The certificate is signed by the identity it certifies
and should be rejected.

4. Untrusted Root. The root authority should not be trusted by the
client and should be rejected.

5. Revoked. The certificate used to be valid but was revoked by
the owner and should be rejected.

6. Pinning Test. A different certificate has been pinned (via an
HPKP header) and so this certificate should be rejected.

7. Incomplete Chain. The certificate chain presented is incom-
plete. Browsers accept this certificate since the incomplete chain
was sufficient to establish trust.

8. SHA1 Intermediate. One of the certificates in the chain was
signed with a SHA1 signing algorithm and should be rejected.

9. 1000/10000 Subject Alt Names. The certificate provides 1000
or 10000 alternate subject names. This behavior is acceptable.

10. RC4-MD5, RC4, 3DES, Null. These are different types of weak
cipher suites used by the respective certificates (and no cipher
suite in the Null case). All of these should be rejected.

11. DH480, DH512, DH1024, DH2048. These are the different
types of Diffie-Hellman key exchange algorithms used by the
connection. Only DH2048 is currently considered secure.

12. DH Small Subgroup, DH Composite. If the key exchange was
performed with a small or non-prime subgroup, then security
cannot be guaranteed and these connections should be rejected.



13. Invalid Expected SCT. The certificate for this site uses a
CA that Chrome requires valid Signed Certificate Timestamps
(SCTs) for, but contains an invalid SCT. Only Chrome enforces
this check.

14. Superfish, eDellRoot, DSD Test Provider. These are certifi-
cates issued known bad certificate authorities and should be
rejected.

3.2 Why do these problems exist?

HSTS and HPKP are relatively recent standards that have been
pioneered by web browsers, so it was not surprising for us to find
that non-browser software do not implement them. However, this
supports the argument that browsers are ahead of other applications
when it comes to providing connection security. Browsers are also
more frequently updated when compared to non-browsers allowing
them to fix any discovered vulnerabilities faster.

Both Chrome and Firefox have dedicated security teams working
on ensuring the safety of the respective browsers. It is difficult to
for every single HTTP client implementation to afford the same
attention to security as browsers can even when the applications
have similar connection requirements. While we can encourage safe
defaults and better tutorials, developers who implement such http
clients are still prone to making mistakes when using TLS libraries.
These mistakes would be difficult to eliminate since developers
quite often do not have the security expertise to understand these
mistakes. This can be seen by comments from developers on
stack overflow, with one particular response suggesting disabling
certificate validation being a top answer with hundreds of votes [2].

3.3 Non-browsers have a representation issue

Due to the nature of most command-line HTTP clients and their
lack of a graphical user interface, they do not convey the same infor-
mation about the security of the connection to the user as browsers
do. There has been a lot of work involved in presenting appropriate
security warnings to the user when a certificate error occurs [10].
Further, the “green lock” symbol is also a useful indicator to users
about the security of their connection to some website. All of these
advantages are application specific and traditionally exclusive to
browsers.

Redirects, in particular, can be easily overlooked without ap-
propriate indicators. Browsers consider HTTPS to HTTP redirect
for top-level pages as acceptable behavior since the user can look
for insecure connection indicators next to the url. This behavior
however may not be appropriate for an application like wget. In the
case of such a redirect, wget would follow the redirect and down-
load the resource. The redirect to HTTP is easily overlooked by an
average user. Considering the original request was for an HTTPS url,
the user’s security may have been undermined without the knowl-
edge of the user. If the user was downloading code and piping it to
bash, a common practice, then an HTTPS to HTTP redirect could
allow a man-in-the-middle attacker to run code directly on the user’s
machine.

4. Delegating connection security to browser
We propose a new way to build non-browser applications that
allows developers to use the TLS protocol as implemented for web
security but does not require the expertise needed to implement
TLS verification correctly. We achieve this by delegating the actual
network request/response handling to Chrome. Instead of directly
interfacing with TLS, all requests are forwarded to Chrome, which
would handle proper certificate checking on behalf of the application.
This allows HTTP clients to capitalize on the security, reliability, and
update frequency of Chrome, while only having to worry about the
correctness of application layer logic. Another huge benefit to this
approach is that the benefits are not restricted to just establishing
a TLS connection. Chrome also implements HSTS, HPKP, and
revocation verification, and HTTP clients delegating requests to
Chrome gain all of these advantages for free as well. Chrome also
provides protection from websites marked as containing malware,
phishing attacks, and dangerous binaries. These are pages that may
be served over a secure connection, but are flagged as malicious
(which may happen due to a server compromise, or a malicious
hosting site). Delegating requests to Chrome allows other HTTP
clients to avoid downloading malware as well.

4.1 Remote debugging protocol

We built a prototype version of wget that we discuss in Section 5.
For our prototype implementation, we utilize the Chrome remote
debugging protocol. When remote debugging is enabled for Chrome,
it allows other applications to communicate with the browser over
a web socket. This feature has mainly been used for debugging
Chrome, but we use it to issue network requests and fetch responses.
Since the network request is made by Chrome, it performs all the
usual HTTPS security checks and the request only succeeds if the
connection is secure, we only add additional logic for redirects.
Figure 1 shows the design for this approach.

Figure 1. Prototype approach: Applications issue requests and
fetch responses from Chrome through the Chrome remote debugging
protocol. Chrome makes the request on the application’s behalf and
fetches handles all connection security specifics.

4.2 Linking directly to Chrome’s networking code

Using the remote debugging protocol to delegate requests to Chrome
is inefficient since serialized messages are exchanged over a web
socket between the HTTP client and the browser. A more optimized
and secure approach would be to link directly with Chrome’s
networking library. This could potentially be more lightweight as it



would only require a small subset of Chrome wrapped with a thin
request API that applications could interface with. Figure 2 shows a
potential design for this approach. We leave this approach for future
work.

Figure 2. Optimal approach: The network request library from
Chrome is exported (along with any security handling logic) and
wrapped up in a library with an exposed Request API that non-
browser applications interface with.

4.3 Motivation

The motivation behind our delegation approach is based on two
key facts: (1) Browsers are already pioneers of providing secure
communication and other applications can capitalize on that. (2)
Writing security critical code is difficult and we want to minimize
the amount of such code that needs to be written by developers.
Currently, any HTTP client would have to include its own code
that either correctly implements the TLS protocol, or uses a TLS
library correctly, both of which have proven to be difficult [11].
As an example of our delegation approach, we implement swget, a
prototype of wget that provides connection security without writing
any TLS verification code. This pattern can also be used to create a
library that provides a simple Fetch API that any HTTP client could
interface with easily.

5. swget
wget is a popular command line tool for downloading files from a
webserver. It is frequently used by developers to crawl web pages,
download scripts, and sometimes directly pipe such scripts to the
shell (for example, when installing software such as Node or Bower).
While such a practice of executing code obtained remotely can be
dangerous in itself, it is especially a problem if the security of the
connection is compromised by a man-in-the middle attacker.

Figure 3. swget fetches and saves the webpage similar to wget in
the normal case

We wrote our own prototype version of secure wget that has
the same basic functionality as wget, but uses Chrome to make

network requests. Figure 3 shows standard behavior of swget when
fetching a webpage. Looking at wget’s source code, we see it has
994 lines of code for interfacing with the OpenSSL library. Our
version of swget does not require any code to interface with a TLS
library. Only 8 lines of code are needed to add a certificate handler
since Chrome would already throw an event in case any abnormal
certificate is encountered. We override Chrome’s certificate handling
settings using the remote debugging protocol to grab the certificate
error determined by Chrome and cancel the request. We used the
Chrome remote interface Node.js library to construct our messages
to Chrome which also contributed to the decreased code size.
Figure 4 shows how swget responds when it catches a certificate
error.

Figure 4. swget catches any certificate errors caught by Chrome.
In the figure, we see an example of domains with expired certificate,
mismatched hostname, and an example of website that serves a valid
certificate that was not pinned as part of the HPKP policy.

Since Chrome does certificate validation, swget’s connection
security is at least as restrictive as that of Chrome by default. We can
manually increase or decrease restrictions based on user supplied
arguments to swget. This also includes protection from revoked
certificates, something which wget does not provide today. A full
list of our certificate testing for various clients can be found in
Table 1 in the appendix.

5.1 Secure redirects

Figure 5. Preventing unsafe https to http redirects

The default redirect behavior for Chrome is for top level requests
is to follow redirects. While this behavior is okay for Chrome, this
may not be ideal for an application like wget. Users use wget to
fetch and download files. If a request to fetch was made for an https
link which was then redirected to HTTP, security of the connection
could be compromised by an attacker. While browsers can display
the current security status to the user, there’s no convenient way to
check whether a file downloaded with wget was actually downloaded
securely or not, once the file has already been fetched. We disable
HTTPS to HTTP redirects by default in our implementation of swget.
As seen from Figure 5 a connection is terminated if the application
encounters an unsafe redirect. Command-line HTTP clients such as
wget and curl do not currently provide secure redirects.



5.2 Warning messages

Non-browser applications have suffered from having poor UI in
comparison to browsers. Previous research has shown that better
browser TLS warnings decreased user click-through [9]. We believe
that users that use non-browser applications would similarly benefit
from improved warning messages and have included more visual
indicators (such as lock symbols) to convey the security state of
the connection. This is especially noticeable in the case of redirects
(Figure 5) and malware warnings (Figure 6). Further work needs to
be done to measure the effectiveness of these warnings.

Figure 6. Malware detection as flagged by Chrome

5.3 Cookies and basic authentication

Since swget uses Chrome to issue web requests, it can take ad-
vantage of Chrome’s session management. This allows us to en-
able/disable cookies for swget. Depending on the behavior the user
wants, the user’s Chrome profile can be used if the client needs to
access the browser cookies, otherwise, a fresh Chrome user profile
could be created that doesn’t share any session state with the user’s
actual browser.

Cookie authentication can be pretty useful, especially to down-
load web pages that require authentication (for example, Facebook).
In standard wget, the user would have to provide their login creden-
tials to wget or create a special authentication token for wget. In
case of swget, the browser is already authenticated with the web
server hence no further authentication is needed.

To demonstrate this, we provide an example of HTTP basic au-
thentication by using swget on a website that requires a user to
provide login credentials before visiting the website. Using wget
on this website would return a 401 Unauthorized error unless the
credentials are provided along with the url. We used a simple user-
name/password prompt to allow an swget user to provide credentials
dynamically if a website requests for them. Since Chrome remem-
bers the authentication credentials for the session, any further re-
quests would automatically have the credentials filled by Chrome.
This can be seen in Figure 7. The user is prompted again if the
credentials did not match correctly.

Figure 7. HTTP Basic Auth

5.4 Centralized HSTS and HPKP

When Chrome receives an HSTS or HPKP header from a domain,
it would record the header and provide protection for the website.

Wget provides a similar HSTS protection for a domain. However, if
an HSTS entry is recorded for a website by Chrome, the user gets
HSTS protection only for Chrome, and not wget, and vice versa. In
fact, any two different clients do not share these protections with
each other. As such, the user is vulnerable every time they make an
HTTP request for a website from a new client even though they have
previously received an HSTS header for the domain via different
client. The same problem exists for HPKP.

The model of delegating connection security to a single client—
Chrome in our prototype—provides a centralized way to maintain
HSTS and HPKP records. As such, any clients (such as swget)
automatically share these protections with the browser. In fact, all
clients that use this model would share these protections.

5.5 Future Work

Browsers provide protection against mixed-content in webpages
(for example, HTTP hyperlinks on a webpage served over HTTPS)
through security warnings. They also disable loading HTTP iframes
when the top level page is served over HTTPS. Further, if a Content-
Security-Policy header is served by the server that specifies the
client to upgrade insecure requests, browsers will upgrade insecure
HTTP requests to HTTPS. Swget currently does not support these
mechanisms but we plan to implement CSP request upgrades in the
future.

We also plan to add subresource integrity checking to swget.
Browsers can verify the integrity of subresources downloaded over
HTTP, commonly seen for media downloaded from a CDN, by
checking the cryptographic hash of the subresource obtained over
HTTPS. Command-line HTTP clients can benefit greatly from
subresource integrity.

6. Conclusion
Today, non-browser HTTP clients are weak to network adversaries
in ways that browsers aren’t. Our successful implementation of
swget shows that this is a feasible strategy of building non-browser
HTTP clients that require connection security without interfacing
directly with a TLS library.

Another approach involves retrofitting implementations of SSL
Libraries through dynamic linking [3]. The benefits of this approach
is that it doesn’t require existing applications to be changed. How-
ever, this mechanism only improves proper certificate validation, it
doesn’t provide further protections such as malware detection, HSTS
upgrade, browser maintained CRLs, etc. In contrast, our approach
also address protection sharing across clients through a centralized
protection mechanism.

7. Acknowledgments
We’d like to thank Deian Stefan and Hovav Shacham for providing
valuble insight during discussions of saber.

References
[1] Hsts preload. https://hstspreload.org/.



[2] Trusting all certificates using httpclient over https. https:

//stackoverflow.com/questions/2642777/trusting-all-

certificates-using-httpclient-over-https.

[3] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian, K. Butler,
and A. Alkhelaifi. Securing ssl certificate verification through dynamic
linking. In CCS, November 2014.

[4] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile. RFC 5280, RFC Editor,
May 2008. URL http://www.rfc-editor.org/rfc/rfc5280.txt.
http://www.rfc-editor.org/rfc/rfc5280.txt.

[5] T. Dierks and E. Rescorla. The transport layer security (tls) pro-
tocol version 1.2. RFC 5246, RFC Editor, August 2008. URL
http://www.rfc-editor.org/rfc/rfc5246.txt. http://www.

rfc-editor.org/rfc/rfc5246.txt.

[6] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of
the https certificate ecosystem. In IMC. ACM, October 2013.

[7] D. Eastlake. Transport layer security (tls) extensions: Extension defini-
tions. RFC 6066, RFC Editor, January 2011. URL http://www.rfc-

editor.org/rfc/rfc6066.txt. http://www.rfc-editor.org/

rfc/rfc6066.txt.

[8] C. Evans, C. Palmer, and R. Sleevi. Public key pinning extension for
http. RFC 7469, RFC Editor, April 2015. URL http://www.rfc-

editor.org/rfc/rfc7469.txt. http://www.rfc-editor.org/

rfc/rfc7469.txt.

[9] A. P. Felt and D. Akhawe. Alice in warningland. In USENIX. USENIX,
2013.

[10] A. P. Felt, R. Reeder, A. Ainslie, H. Harris, M. Walker, C. Thompson,
M. Acer, E. Morant, and S. Consolvo. Rethinking connection security
indicators. In SOUPS. USENIX, June 2016.

[11] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world: Validating
ssl certificates in non-browser software. In CCS, October 2012.

[12] S. Gibson. Security certificate revocation awareness: The case for
ocsp must-staple. https://www.grc.com/revocation/ocsp-must-
staple.htm, April 2014.

[13] M. Goodwin. Revoking intermediate certificates: Introducing onecrl.
https://blog.mozilla.org/security/2015/03/03/revoking-

intermediate-certificates-introducing-onecrl/, March
2015.

[14] Google. Crlsets. https://dev.chromium.org/Home/chromium-

security/crlsets.

[15] J. Hodges, C. Jackson, and A. Barth. Http strict transport security (hsts).
RFC 6797, RFC Editor, November 2012. URL http://www.rfc-

editor.org/rfc/rfc6797.txt. http://www.rfc-editor.org/

rfc/rfc6797.txt.

[16] B. Laurie, A. Langley, and E. Kasper. Certificate transparency. RFC
6962, RFC Editor, June 2013.

[17] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mis-
love, A. Schulman, and C. Wilson. An end-to-end measurement of
certificate revocation in the webs pki. In IMC. ACM, October 2015.

[18] M. Marlinspike. New tricks for defeating ssl in prac-
tice. https://www.blackhat.com/presentations/bh-dc-

09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-

SSL.pdf, 2009.

[19] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
internet public key infrastructure online certificate status protocol -
ocsp. RFC 2560, RFC Editor, June 1999. URL http://www.rfc-

editor.org/rfc/rfc2560.txt. http://www.rfc-editor.org/

rfc/rfc2560.txt.

[20] N. Provos and I. Fette. All about safe browsing. https://

blog.chromium.org/2012/01/all-about-safe-browsing.html,
January 2012.

[21] E. Rescorla. Http over tls. RFC 2818, RFC Editor, May 2000.
URL http://www.rfc-editor.org/rfc/rfc2818.txt. http://

www.rfc-editor.org/rfc/rfc2818.txt.

[22] T. Ruhsen. Fix updating hsts entries. http://

git.savannah.gnu.org/cgit/wget.git/commit/?id=

57d748117ffa7bc66dedbfe8a93175a9585e2950.

[23] C. Soghoian and S. Stamm. Certified lies: Detecting and defeating
government interception attacks against ssl. In Financial Cryptography
and Data Security. IFCA, 2012.



A. Certificate Results

Table 1: Behavior of different clients when presented with different certificates. A
green entry indicates that behavior is safe. A red entry indicates that the behavior
is not ideal.

Certificate wget curl python node firefox chrome
Expired Rejected Rejected Rejected Rejected Rejected Rejected

Wrong Host Rejected Rejected Rejected Rejected Rejected Rejected
Self Signed Rejected Rejected Rejected Rejected Rejected Rejected

Untrusted Root Rejected Rejected Rejected Rejected Rejected Rejected
Revoked Accepted Accepted Accepted Accepted Rejected Rejected

Pinning Test Accepted Accepted Accepted Accepted Rejected Rejected
Incomplete Chain Rejected Accepted Rejected Rejected Accepted Accepted

SHA1 Intermediate Accepted Accepted Accepted Accepted Rejected Rejected
1000 Subject Alt Names Accepted Accepted Accepted Accepted Accepted Accepted

10000 Subject Alt Names Rejected Accepted Rejected Rejected Rejected Rejected
RC4-MD5 Accepted Rejected Rejected Rejected Rejected Rejected

RC4 Accepted Rejected Rejected Rejected Rejected Rejected
3DES Accepted Accepted Rejected Rejected Accepted Accepted
Null Rejected Rejected Rejected Rejected Rejected Rejected

DH480 Rejected Rejected Rejected Rejected Rejected Rejected
DH512 Rejected Rejected Rejected Rejected Rejected Rejected
DH1024 Accepted Accepted Accepted Accepted Accepted Rejected
DH2048 Accepted Accepted Accepted Accepted Accepted Accepted

DH Small Subgroup Accepted Accepted Accepted Accepted Accepted Rejected
DH Composite Accepted Accepted Accepted Accepted Accepted Rejected

Invalid Expected SCT Accepted Accepted Accepted Accepted Accepted Rejected
Superfish Rejected Rejected Rejected Rejected Rejected Rejected
eDellRoot Rejected Rejected Rejected Rejected Rejected Rejected

DSD Test Provider Rejected Rejected Rejected Rejected Rejected Rejected


